examples

76 interactive examples

hover example to preview

1

Snake 3D

audio
2

Creating Yoyo Animation

3

Creating Wooden Planks Animation

4

Creating Windstorm Animation

5

Creating Windmill Animation

6

Creating Whale Animation

7

Creating Waterfall Animation

8

Creating Volcano Animation

9

Creating Vaporwave Animation

10

Creating Tree Animation

11

Creating Tornado Animation

12

Creating Sun Animation

13

Creating Stone Wall Animation

14

Creating Spring Animation

15

Creating Spider Animation

16

Creating Spaceship Animation

17

Creating Solar System Educational Animation

18

Creating Solar System Animation

19

Creating Snowglobe Animation

20

Creating Snake Animation

21

Creating Sailboat Animation

22

Creating Robot Animation

23

Creating River Rapids Animation

24

Creating Rainbow Animation

25

Creating Prism Animation

26

Creating Pinwheel Animation

27

Creating Pine Tree Animation

28

Creating Phoenix Animation

29

Creating Pendulum Animation

30

Creating Octopus Animation

31

Creating Mushroom Animation

32

Creating Metronome Animation

33

Creating Meteor Animation

34

Creating Metal Plates Animation

35

Creating Lissajous Animation

36

Creating Lightning Animation

37

Creating Lighthouse Animation

38

Creating Lava Lamp Animation

39

Creating Lantern Animation

40

Creating Kite Animation

41

Creating Kaleidoscope Animation

42

Creating Jellyfish Animation

43

Creating Inner Planets Orbit Animation

44

Creating Hourglass Animation

45

Creating Hive Animation

46

Creating Grass Animation

47

Creating Geyser Animation

48

Creating Gear Animation

49

Creating Fountain Animation

50

Creating Flower Animation

51

Creating Fish Animation

52

Creating Fireworks Animation

53

Creating Fern Animation

54

Creating Earth Orbit Animation

55

Creating Dragon Animation

56

Creating Disco Ball Animation

57

Creating Demon Animation

58

Creating Crystallization Animation

59

Creating Crystal Animation

60

Creating Cosmic Formation Animation

61

Creating Coral Reef Animation

62

Creating Compass Animation

63

Creating Cloud Animation

64

Creating Clock Animation

65

Creating Castle Animation

66

Creating Carousel Animation

67

Creating Candle Animation

68

Creating Campfire Animation

69

Creating Cactus Animation

70

Creating Butterfly Animation

71

Creating Bush Animation

72

Creating Brick Wall Animation

73

Creating Blackhole Animation

74

Creating Beehive Animation

75

Creating Aurora Animation

76

🎈 Floating Balloons

hover for preview

Creating Crystallization Animation

published on 8/21/2025
interactive example

Crystallization Animation Tutorial

This guide walks you through how to generate a looping 3D voxel animation of crystallization using SpatialStudio. The script creates growing crystal formations that emerge, shimmer, and evolve inside a cubic 3D space, then saves the animation to a .splv file.


What this script does

  • Creates a 3D scene of size 128×128×128

  • Spawns 6 crystal clusters, each with:

    • A geometric crystal structure with faceted surfaces
    • Growing formations that emerge over time
    • Translucent surfaces with internal light refraction
  • Animates the crystallization process for 10 seconds at 30 FPS

  • Outputs the file crystallization.splv that you can play in your viewer


How it works (simplified)

  1. Voxel volume Each frame is a 3D grid filled with RGBA values (SIZE × SIZE × SIZE × 4).

  2. Crystal geometry Crystals are built using mathematical functions to create angular, faceted structures that grow outward from seed points.

  3. Growth animation Each crystal starts small and expands over time, with different growth rates for realistic formation.

  4. Surface effects Translucent surfaces with varying opacity create depth, while bright highlights simulate light refraction.

  5. Animation loop A normalized time variable t cycles from 0 → 2π, with crystals growing and shrinking in a smooth loop.

  6. Encoding Frames are passed into splv.Encoder, which writes them into the .splv video file.


Try it yourself

Install requirements first:

pip install spatialstudio numpy tqdm

Then copy this script into crystallization.py and run:

python crystallization.py

Full Script

import numpy as np
from spatialstudio import splv
from tqdm import tqdm

# Scene setup
SIZE, FPS, SECONDS = 128, 30, 10
FRAMES = FPS * SECONDS
CENTER_X = CENTER_Y = CENTER_Z = SIZE // 2
OUT_PATH = "../outputs/crystallization.splv"

# Crystal settings
CRYSTAL_COUNT = 6
MAX_CRYSTAL_SIZE = 18
GROWTH_SPEED = 1.5

def add_voxel(volume, x, y, z, color, alpha=255):
    if 0 <= x < SIZE and 0 <= y < SIZE and 0 <= z < SIZE:
        volume[x, y, z, :3] = color
        volume[x, y, z, 3] = alpha

def crystal_shape(x, y, z, size):
    # Create angular crystal shape using diamond/octahedron geometry
    distance = (abs(x) + abs(y) + abs(z)) / 1.5
    facet_distance = max(abs(x), abs(y), abs(z))
    return distance <= size and facet_distance <= size * 0.8

def generate_crystal_core(volume, cx, cy, cz, color, size, t):
    # Generate the main crystal body with faceted surfaces
    for dx in range(-int(size), int(size)+1):
        for dy in range(-int(size), int(size)+1):
            for dz in range(-int(size), int(size)+1):
                if crystal_shape(dx, dy, dz, size):
                    # Add surface variation based on facets
                    facet_intensity = abs(dx) + abs(dy) + abs(dz)
                    brightness = 0.7 + 0.3 * np.sin(facet_intensity * 0.5 + t)
                    
                    final_color = tuple(min(255, int(c * brightness)) for c in color)
                    
                    # Make edges more translucent
                    edge_distance = min(abs(dx), abs(dy), abs(dz))
                    alpha = int(120 + 135 * (edge_distance / size))
                    
                    add_voxel(volume, cx+dx, cy+dy, cz+dz, final_color, alpha)

def generate_crystal_spikes(volume, cx, cy, cz, color, size, t):
    # Generate smaller crystal spikes growing from the main body
    directions = [(1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1)]
    
    for i, (dx, dy, dz) in enumerate(directions):
        spike_length = int(size * 0.6 * (1 + 0.3 * np.sin(t + i)))
        spike_thickness = max(1, int(size * 0.2))
        
        for length in range(int(size * 0.7), int(size * 0.7) + spike_length):
            for thickness in range(-spike_thickness, spike_thickness + 1):
                for thickness2 in range(-spike_thickness, thickness_thickness + 1):
                    if thickness*thickness + thickness2*thickness2 <= spike_thickness*spike_thickness:
                        spike_x = cx + dx * length + (dy if dx == 0 else 0) * thickness + (dz if dx == 0 and dy == 0 else 0) * thickness2
                        spike_y = cy + dy * length + (dx if dy == 0 else 0) * thickness + (dz if dy == 0 and dx == 0 else 0) * thickness2
                        spike_z = cz + dz * length + (dx if dz == 0 else 0) * thickness + (dy if dz == 0 and dx == 0 else 0) * thickness2
                        
                        brightness = 0.8 + 0.2 * (length / (size + spike_length))
                        final_color = tuple(min(255, int(c * brightness)) for c in color)
                        add_voxel(volume, spike_x, spike_y, spike_z, final_color, 180)

def generate_crystal_highlights(volume, cx, cy, cz, size, t):
    # Add bright highlights to simulate internal light refraction
    highlight_count = 8
    for i in range(highlight_count):
        angle1 = (i / highlight_count) * 2 * np.pi + t * 0.5
        angle2 = np.sin(t * 0.7 + i) * 0.5
        
        highlight_radius = size * 0.4
        hx = cx + int(highlight_radius * np.cos(angle1) * np.cos(angle2))
        hy = cy + int(highlight_radius * np.sin(angle2))
        hz = cz + int(highlight_radius * np.sin(angle1) * np.cos(angle2))
        
        # Create small bright spots
        for dx in range(-1, 2):
            for dy in range(-1, 2):
                for dz in range(-1, 2):
                    if dx*dx + dy*dy + dz*dz <= 1:
                        brightness = int(200 + 55 * np.sin(t * 2 + i))
                        add_voxel(volume, hx+dx, hy+dy, hz+dz, (brightness, brightness, 255), 200)

def generate_crystal_cluster(volume, t):
    # Crystal colors - cool tones like real minerals
    colors = [
        (100, 200, 255),  # Ice blue
        (150, 255, 200),  # Mint green
        (200, 150, 255),  # Lavender
        (255, 200, 150),  # Warm amber
        (150, 255, 255),  # Cyan
        (255, 180, 200),  # Rose quartz
    ]
    
    positions = [
        (0.3, 0.7, 0.4), (0.7, 0.3, 0.6), (0.5, 0.5, 0.2),
        (0.2, 0.4, 0.8), (0.8, 0.6, 0.3), (0.6, 0.8, 0.7)
    ]
    
    for i in range(CRYSTAL_COUNT):
        # Position crystals around the scene
        px, py, pz = positions[i]
        cx = int(SIZE * px)
        cy = int(SIZE * py) 
        cz = int(SIZE * pz)
        
        # Animate crystal growth with different phases
        growth_phase = (t + i * np.pi / 3) % (2 * np.pi)
        growth_factor = (np.sin(growth_phase * GROWTH_SPEED) + 1) / 2  # 0 to 1
        size = MAX_CRYSTAL_SIZE * (0.3 + 0.7 * growth_factor)
        
        color = colors[i % len(colors)]
        
        # Generate crystal components
        if size > 3:  # Only draw if crystal is big enough
            generate_crystal_core(volume, cx, cy, cz, color, size, t)
            if size > 8:
                generate_crystal_spikes(volume, cx, cy, cz, color, size, t)
            generate_crystal_highlights(volume, cx, cy, cz, size, t)

def generate_scene(volume, t):
    # Add subtle background particles for atmosphere
    particle_count = 20
    for i in range(particle_count):
        px = int((SIZE * 0.1) + (SIZE * 0.8 * ((i * 47) % 100) / 100))
        py = int((SIZE * 0.1) + (SIZE * 0.8 * ((i * 73) % 100) / 100))
        pz = int((SIZE * 0.1) + (SIZE * 0.8 * ((i * 97) % 100) / 100))
        
        brightness = int(30 + 25 * np.sin(t * 0.5 + i * 0.3))
        add_voxel(volume, px, py, pz, (brightness, brightness, brightness + 20), 60)
    
    generate_crystal_cluster(volume, t)

enc = splv.Encoder(SIZE, SIZE, SIZE, framerate=FPS, outputPath=OUT_PATH, motionVectors="off")

for frame in tqdm(range(FRAMES), desc="Growing crystals"):
    volume = np.zeros((SIZE, SIZE, SIZE, 4), dtype=np.uint8)
    t = (frame / FRAMES) * 2 * np.pi
    generate_scene(volume, t)
    enc.encode(splv.Frame(volume, lrAxis="x", udAxis="y", fbAxis="z"))

enc.finish()
print(f"Created {OUT_PATH}")

Next steps

  • Adjust CRYSTAL_COUNT to create more or fewer crystal formations.
  • Modify colors to experiment with different mineral types.
  • Change GROWTH_SPEED to make crystals form faster or slower.
  • Add + int(t*2) to Y positions to make crystals rise while growing.
  • Experiment with different crystal shapes by modifying the crystal_shape() function.