examples

76 interactive examples

hover example to preview

1

Snake 3D

audio
2

Creating Yoyo Animation

3

Creating Wooden Planks Animation

4

Creating Windstorm Animation

5

Creating Windmill Animation

6

Creating Whale Animation

7

Creating Waterfall Animation

8

Creating Volcano Animation

9

Creating Vaporwave Animation

10

Creating Tree Animation

11

Creating Tornado Animation

12

Creating Sun Animation

13

Creating Stone Wall Animation

14

Creating Spring Animation

15

Creating Spider Animation

16

Creating Spaceship Animation

17

Creating Solar System Educational Animation

18

Creating Solar System Animation

19

Creating Snowglobe Animation

20

Creating Snake Animation

21

Creating Sailboat Animation

22

Creating Robot Animation

23

Creating River Rapids Animation

24

Creating Rainbow Animation

25

Creating Prism Animation

26

Creating Pinwheel Animation

27

Creating Pine Tree Animation

28

Creating Phoenix Animation

29

Creating Pendulum Animation

30

Creating Octopus Animation

31

Creating Mushroom Animation

32

Creating Metronome Animation

33

Creating Meteor Animation

34

Creating Metal Plates Animation

35

Creating Lissajous Animation

36

Creating Lightning Animation

37

Creating Lighthouse Animation

38

Creating Lava Lamp Animation

39

Creating Lantern Animation

40

Creating Kite Animation

41

Creating Kaleidoscope Animation

42

Creating Jellyfish Animation

43

Creating Inner Planets Orbit Animation

44

Creating Hourglass Animation

45

Creating Hive Animation

46

Creating Grass Animation

47

Creating Geyser Animation

48

Creating Gear Animation

49

Creating Fountain Animation

50

Creating Flower Animation

51

Creating Fish Animation

52

Creating Fireworks Animation

53

Creating Fern Animation

54

Creating Earth Orbit Animation

55

Creating Dragon Animation

56

Creating Disco Ball Animation

57

Creating Demon Animation

58

Creating Crystallization Animation

59

Creating Crystal Animation

60

Creating Cosmic Formation Animation

61

Creating Coral Reef Animation

62

Creating Compass Animation

63

Creating Cloud Animation

64

Creating Clock Animation

65

Creating Castle Animation

66

Creating Carousel Animation

67

Creating Candle Animation

68

Creating Campfire Animation

69

Creating Cactus Animation

70

Creating Butterfly Animation

71

Creating Bush Animation

72

Creating Brick Wall Animation

73

Creating Blackhole Animation

74

Creating Beehive Animation

75

Creating Aurora Animation

76

🎈 Floating Balloons

hover for preview

Creating Waterfall Animation

published on 8/21/2025
interactive example

Waterfall - 3D Voxel Animation Learning Example

This guide walks you through how to generate a looping 3D voxel animation of a waterfall using SpatialStudio. The script creates a cascading waterfall with flowing water, mist particles, and rocky terrain inside a cubic 3D space, then saves the animation to a .splv file.


What this script does

  • Creates a 3D scene of size 128×128×128
  • Generates a realistic waterfall with:
    • Rocky cliff face with natural texture
    • Flowing water cascading down multiple levels
    • Animated water particles with physics
    • Misty spray effects at the base
    • A collecting pool with ripple animations
  • Animates the water flow for 10 seconds at 30 FPS
  • Outputs the file waterfall.splv that you can play in your viewer

How it works (simplified)

  1. Voxel volume Each frame is a 3D grid filled with RGBA values (SIZE × SIZE × SIZE × 4).

  2. Rock formation The cliff is built using multiple layers of brown and gray voxels with noise for realistic texture.

  3. Water flow Water particles follow gravity-based physics, bouncing off rocks and creating natural flow patterns.

  4. Mist effects Semi-transparent white particles simulate water spray and mist around impact zones.

  5. Pool animation The water pool at the bottom features animated ripples and surface disturbances.

  6. Animation loop A normalized time variable t cycles from 0 → 2π, with particle systems that reset smoothly for seamless looping.

  7. Encoding Frames are passed into splv.Encoder, which writes them into the .splv video file.


Try it yourself

Install requirements first:

pip install spatialstudio numpy tqdm

Then copy this script into waterfall.py and run:

python waterfall.py

Full Script

import numpy as np
from spatialstudio import splv
from tqdm import tqdm

# Scene setup
SIZE, FPS, SECONDS = 128, 30, 10
FRAMES = FPS * SECONDS
CENTER_X = CENTER_Y = CENTER_Z = SIZE // 2
OUT_PATH = "../outputs/waterfall.splv"

# Waterfall settings
WATER_PARTICLES = 150
MIST_PARTICLES = 80
CLIFF_HEIGHT = 90
POOL_DEPTH = 15

def add_voxel(volume, x, y, z, color, alpha=255):
    if 0 <= x < SIZE and 0 <= y < SIZE and 0 <= z < SIZE:
        volume[x, y, z, :3] = color
        volume[x, y, z, 3] = alpha

def generate_cliff(volume, t):
    rock_colors = [(101, 67, 33), (139, 69, 19), (160, 82, 45), (105, 105, 105)]
    
    for x in range(SIZE//3, 2*SIZE//3):
        for z in range(SIZE//4, SIZE):
            # Create cliff face with natural variation
            cliff_thickness = int(15 + 8*np.sin(x*0.1 + z*0.08))
            for y in range(SIZE//4, SIZE - 10):
                if x > SIZE//2 + cliff_thickness:
                    continue
                    
                # Add noise for natural rock texture
                noise = np.sin(x*0.2 + y*0.15 + z*0.1 + t*0.1) * 3
                if np.random.random() < 0.85 + noise*0.05:
                    color_idx = int((x + y + z) * 0.1) % len(rock_colors)
                    color = rock_colors[color_idx]
                    brightness = 0.8 + 0.4*np.sin(x*0.1 + y*0.1)
                    final_color = tuple(int(c * brightness) for c in color)
                    add_voxel(volume, x, y, z, final_color)

def generate_water_flow(volume, t):
    water_color = (64, 164, 223)
    dark_water = (32, 100, 150)
    
    # Main water stream
    stream_x = SIZE//2 - 5
    for y in range(SIZE - 20, SIZE//4, -1):
        flow_offset = int(3*np.sin(t*2.0 + y*0.1))
        stream_width = max(2, int(4 + 2*np.sin(y*0.05)))
        
        for dx in range(-stream_width, stream_width+1):
            for dz in range(-2, 3):
                x = stream_x + dx + flow_offset
                z = CENTER_Z + dz
                
                # Vary water transparency and color
                if abs(dx) < stream_width//2:
                    add_voxel(volume, x, y, z, water_color, 200)
                else:
                    add_voxel(volume, x, y, z, dark_water, 150)

def generate_water_particles(volume, t):
    water_particle_color = (100, 200, 255)
    
    for i in range(WATER_PARTICLES):
        # Particle lifecycle
        particle_time = (t + i*0.1) % (2*np.pi)
        progress = particle_time / (2*np.pi)
        
        # Starting position at cliff top
        start_x = SIZE//2 - 5 + int(3*np.sin(i*0.5))
        start_y = SIZE - 25
        start_z = CENTER_Z + int(2*np.sin(i*0.3))
        
        # Physics simulation
        fall_distance = progress * CLIFF_HEIGHT
        bounce_factor = max(0, 1 - progress*1.5)
        
        x = start_x + int(bounce_factor * 8*np.sin(t*3 + i*0.2))
        y = int(start_y - fall_distance + 5*np.sin(t*4 + i*0.1)*bounce_factor)
        z = start_z + int(bounce_factor * 4*np.cos(t*2 + i*0.15))
        
        if y > SIZE//4:  # Only show particles above pool level
            alpha = int(255 * bounce_factor * (1 - progress*0.5))
            add_voxel(volume, x, y, z, water_particle_color, alpha)

def generate_mist(volume, t):
    mist_color = (255, 255, 255)
    
    for i in range(MIST_PARTICLES):
        # Mist rises from impact zone
        mist_time = (t*0.5 + i*0.2) % (2*np.pi)
        rise_progress = mist_time / (2*np.pi)
        
        base_x = SIZE//2 + int(15*np.sin(i*0.4))
        base_z = CENTER_Z + int(10*np.cos(i*0.3))
        
        x = base_x + int(8*np.sin(t*1.5 + i*0.1))
        y = SIZE//4 + int(rise_progress * 30)
        z = base_z + int(6*np.cos(t*1.2 + i*0.2))
        
        # Mist fades as it rises
        alpha = int(80 * (1 - rise_progress) * (0.5 + 0.5*np.sin(t*2 + i)))
        if alpha > 10:
            add_voxel(volume, x, y, z, mist_color, alpha)

def generate_pool(volume, t):
    pool_color = (30, 80, 120)
    ripple_color = (60, 120, 180)
    
    pool_y = SIZE//4
    
    for x in range(SIZE//3, 2*SIZE//3 + 10):
        for z in range(CENTER_Z - 15, CENTER_Z + 25):
            distance_from_fall = np.sqrt((x - SIZE//2)**2 + (z - CENTER_Z)**2)
            
            if distance_from_fall < 20:
                # Create ripples
                ripple = np.sin(distance_from_fall*0.3 - t*4) * 2
                depth = min(POOL_DEPTH, int(8 + ripple))
                
                for dy in range(depth):
                    y = pool_y - dy
                    if dy < 3:
                        # Surface water with ripples
                        color = ripple_color if ripple > 0 else pool_color
                        alpha = 180 - dy*20
                    else:
                        # Deeper water
                        color = pool_color
                        alpha = max(100, 200 - dy*15)
                    
                    add_voxel(volume, x, y, z, color, alpha)

def generate_environment_details(volume, t):
    # Add some vegetation and rocks around the pool
    vegetation_color = (34, 139, 34)
    rock_color = (105, 105, 105)
    
    # Small rocks scattered around
    for i in range(20):
        rock_x = SIZE//3 + int(40*np.sin(i*2.1))
        rock_z = CENTER_Z + int(30*np.cos(i*1.7))
        rock_size = 2 + int(2*np.sin(i))
        
        for dx in range(-rock_size, rock_size+1):
            for dz in range(-rock_size, rock_size+1):
                if dx*dx + dz*dz <= rock_size*rock_size:
                    add_voxel(volume, rock_x+dx, SIZE//4+1, rock_z+dz, rock_color)
    
    # Simple vegetation
    for i in range(15):
        plant_x = SIZE//4 + int(60*np.sin(i*1.8))
        plant_z = CENTER_Z + int(35*np.cos(i*2.3))
        plant_height = 3 + int(3*np.sin(t*0.5 + i*0.3))
        
        for dy in range(plant_height):
            sway = int(np.sin(t*2 + i*0.5 + dy*0.3))
            add_voxel(volume, plant_x+sway, SIZE//4+2+dy, plant_z, vegetation_color)

def generate_scene(volume, t):
    generate_cliff(volume, t)
    generate_pool(volume, t)
    generate_water_flow(volume, t)
    generate_water_particles(volume, t)
    generate_mist(volume, t)
    generate_environment_details(volume, t)

enc = splv.Encoder(SIZE, SIZE, SIZE, framerate=FPS, outputPath=OUT_PATH, motionVectors="off")

for frame in tqdm(range(FRAMES), desc="Generating waterfall"):
    volume = np.zeros((SIZE, SIZE, SIZE, 4), dtype=np.uint8)
    t = (frame / FRAMES) * 2*np.pi
    generate_scene(volume, t)
    enc.encode(splv.Frame(volume, lrAxis="x", udAxis="y", fbAxis="z"))

enc.finish()
print(f"Created {OUT_PATH}")

Next steps

  • Adjust WATER_PARTICLES to increase or decrease water density.
  • Modify CLIFF_HEIGHT to create taller or shorter waterfalls.
  • Change the rock_colors array to create different cliff materials.
  • Add seasonal effects by modifying the vegetation_color.
  • Experiment with MIST_PARTICLES to create more or less spray.
  • Try adding rainbow effects in the mist using HSV color gradients.