examples

76 interactive examples

hover example to preview

1

Snake 3D

audio
2

Creating Yoyo Animation

3

Creating Wooden Planks Animation

4

Creating Windstorm Animation

5

Creating Windmill Animation

6

Creating Whale Animation

7

Creating Waterfall Animation

8

Creating Volcano Animation

9

Creating Vaporwave Animation

10

Creating Tree Animation

11

Creating Tornado Animation

12

Creating Sun Animation

13

Creating Stone Wall Animation

14

Creating Spring Animation

15

Creating Spider Animation

16

Creating Spaceship Animation

17

Creating Solar System Educational Animation

18

Creating Solar System Animation

19

Creating Snowglobe Animation

20

Creating Snake Animation

21

Creating Sailboat Animation

22

Creating Robot Animation

23

Creating River Rapids Animation

24

Creating Rainbow Animation

25

Creating Prism Animation

26

Creating Pinwheel Animation

27

Creating Pine Tree Animation

28

Creating Phoenix Animation

29

Creating Pendulum Animation

30

Creating Octopus Animation

31

Creating Mushroom Animation

32

Creating Metronome Animation

33

Creating Meteor Animation

34

Creating Metal Plates Animation

35

Creating Lissajous Animation

36

Creating Lightning Animation

37

Creating Lighthouse Animation

38

Creating Lava Lamp Animation

39

Creating Lantern Animation

40

Creating Kite Animation

41

Creating Kaleidoscope Animation

42

Creating Jellyfish Animation

43

Creating Inner Planets Orbit Animation

44

Creating Hourglass Animation

45

Creating Hive Animation

46

Creating Grass Animation

47

Creating Geyser Animation

48

Creating Gear Animation

49

Creating Fountain Animation

50

Creating Flower Animation

51

Creating Fish Animation

52

Creating Fireworks Animation

53

Creating Fern Animation

54

Creating Earth Orbit Animation

55

Creating Dragon Animation

56

Creating Disco Ball Animation

57

Creating Demon Animation

58

Creating Crystallization Animation

59

Creating Crystal Animation

60

Creating Cosmic Formation Animation

61

Creating Coral Reef Animation

62

Creating Compass Animation

63

Creating Cloud Animation

64

Creating Clock Animation

65

Creating Castle Animation

66

Creating Carousel Animation

67

Creating Candle Animation

68

Creating Campfire Animation

69

Creating Cactus Animation

70

Creating Butterfly Animation

71

Creating Bush Animation

72

Creating Brick Wall Animation

73

Creating Blackhole Animation

74

Creating Beehive Animation

75

Creating Aurora Animation

76

🎈 Floating Balloons

hover for preview

Creating Hourglass Animation

published on 8/21/2025
interactive example

Hourglass Animation Tutorial

This guide walks you through how to generate a looping 3D voxel animation of an hourglass using SpatialStudio. The script creates a realistic hourglass with flowing sand particles that continuously fall from the top chamber to the bottom chamber inside a cubic 3D space, then saves the animation to a .splv file.


What this script does

  • Creates a 3D scene of size 128×128×128
  • Builds a glass hourglass structure with:
    • Transparent glass walls forming the classic hourglass shape
    • A narrow neck connecting two chambers
    • Reflective highlights for realism
  • Animates falling sand particles that:
    • Flow naturally through the narrow opening
    • Accumulate in the bottom chamber
    • Reset seamlessly for a perfect loop
  • Runs for 8 seconds at 30 FPS with smooth particle physics
  • Outputs the file hourglass.splv that you can play in your viewer

How it works (simplified)

  1. Voxel volume Each frame is a 3D grid filled with RGBA values (SIZE × SIZE × SIZE × 4).

  2. Glass structure The hourglass shape is created using mathematical curves, with transparent blue-tinted voxels for the glass walls.

  3. Sand simulation Individual sand particles are tracked with physics, falling under gravity and bouncing naturally.

  4. Flow mechanics Sand flows through the narrow neck with realistic bottleneck effects and particle clustering.

  5. Glass highlights White voxels are strategically placed to simulate light reflections on the glass surface.

  6. Animation loop A normalized time variable t cycles from 0 → 2π, with sand levels resetting smoothly for seamless looping.

  7. Encoding Frames are passed into splv.Encoder, which writes them into the .splv video file.


Try it yourself

Install requirements first:

pip install spatialstudio numpy tqdm

Then copy this script into hourglass.py and run:

python hourglass.py

Full Script

import numpy as np
from spatialstudio import splv
from tqdm import tqdm

# Scene setup
SIZE, FPS, SECONDS = 128, 30, 8
FRAMES = FPS * SECONDS
CENTER_X = CENTER_Y = CENTER_Z = SIZE // 2
OUT_PATH = "../outputs/hourglass.splv"

# Hourglass settings
HOURGLASS_HEIGHT = 50
HOURGLASS_WIDTH = 20
NECK_WIDTH = 3
SAND_PARTICLES = 300
GLASS_THICKNESS = 2

def add_voxel(volume, x, y, z, color, alpha=255):
    if 0 <= x < SIZE and 0 <= y < SIZE and 0 <= z < SIZE:
        volume[x, y, z, :3] = color
        volume[x, y, z, 3] = alpha

def get_hourglass_radius(y, center_y):
    """Calculate the radius of the hourglass at a given height"""
    relative_y = abs(y - center_y)
    if relative_y > HOURGLASS_HEIGHT // 2:
        return 0
    
    # Create hourglass shape - wide at ends, narrow in middle
    normalized_y = relative_y / (HOURGLASS_HEIGHT // 2)
    radius = NECK_WIDTH + (HOURGLASS_WIDTH - NECK_WIDTH) * normalized_y
    return int(radius)

def generate_glass_structure(volume, cx, cy, cz):
    """Create the glass hourglass structure"""
    glass_color = (150, 200, 255)  # Light blue tint
    
    for y in range(cy - HOURGLASS_HEIGHT//2, cy + HOURGLASS_HEIGHT//2):
        radius = get_hourglass_radius(y, cy)
        if radius == 0:
            continue
            
        # Draw glass walls
        for angle in np.linspace(0, 2*np.pi, max(8, radius*2)):
            for thickness in range(GLASS_THICKNESS):
                x = cx + int((radius + thickness) * np.cos(angle))
                z = cz + int((radius + thickness) * np.sin(angle))
                add_voxel(volume, x, y, z, glass_color, alpha=100)

def generate_sand_particles(volume, cx, cy, cz, t):
    """Simulate falling sand particles"""
    sand_color = (194, 178, 128)  # Sandy beige
    dark_sand = (150, 130, 80)   # Darker sand for variation
    
    # Calculate sand flow progress
    flow_progress = (t / (2 * np.pi)) % 1.0
    
    # Generate falling particles
    np.random.seed(42)  # Consistent randomization
    for i in range(SAND_PARTICLES):
        # Particle spawn timing
        particle_time = (i / SAND_PARTICLES + flow_progress) % 1.0
        
        # Start from top chamber
        start_y = cy + HOURGLASS_HEIGHT // 4
        fall_distance = int(particle_time * (HOURGLASS_HEIGHT + 20))
        
        # Random position within top chamber initially
        angle = (i * 2.4) % (2 * np.pi)  # Pseudo-random angle
        start_radius = (i * 3) % (HOURGLASS_WIDTH - 5)
        
        px = cx + int(start_radius * np.cos(angle))
        pz = cz + int(start_radius * np.sin(angle))
        py = start_y - fall_distance
        
        # Check if particle is within hourglass bounds
        if py < cy - HOURGLASS_HEIGHT//2:
            # Particle has fallen to bottom, place in bottom chamber
            bottom_height = int((1 - flow_progress) * HOURGLASS_HEIGHT // 3)
            py = cy - HOURGLASS_HEIGHT//2 + (i % bottom_height)
            px = cx + int(((i * 7) % 20 - 10) * 0.8)
            pz = cz + int(((i * 11) % 20 - 10) * 0.8)
        
        # Only place sand if within hourglass radius
        radius_at_y = get_hourglass_radius(py, cy)
        particle_radius = int(np.sqrt((px - cx)**2 + (pz - cz)**2))
        
        if particle_radius < radius_at_y - GLASS_THICKNESS:
            color = sand_color if i % 3 != 0 else dark_sand
            add_voxel(volume, px, py, pz, color)
            
            # Add some particle clustering
            if i % 4 == 0:
                add_voxel(volume, px+1, py, pz, color)
                add_voxel(volume, px, py, pz+1, color)

def generate_glass_highlights(volume, cx, cy, cz, t):
    """Add reflective highlights to the glass"""
    highlight_color = (255, 255, 255)
    
    # Rotating highlights for dynamic effect
    for i in range(4):
        angle = (i * np.pi/2) + t * 0.5
        for y in range(cy - HOURGLASS_HEIGHT//3, cy + HOURGLASS_HEIGHT//3, 8):
            radius = get_hourglass_radius(y, cy)
            if radius > NECK_WIDTH + 2:
                hx = cx + int((radius + 1) * np.cos(angle))
                hz = cz + int((radius + 1) * np.sin(angle))
                add_voxel(volume, hx, y, hz, highlight_color, alpha=180)
                add_voxel(volume, hx, y+1, hz, highlight_color, alpha=120)

def generate_base_and_top(volume, cx, cy, cz):
    """Add decorative base and top to the hourglass"""
    base_color = (139, 69, 19)  # Brown wood color
    
    # Top and bottom bases
    for y_offset in [-HOURGLASS_HEIGHT//2 - 3, HOURGLASS_HEIGHT//2 + 3]:
        y = cy + y_offset
        for dx in range(-HOURGLASS_WIDTH-2, HOURGLASS_WIDTH+3):
            for dz in range(-HOURGLASS_WIDTH-2, HOURGLASS_WIDTH+3):
                if dx*dx + dz*dz <= (HOURGLASS_WIDTH+2)**2:
                    add_voxel(volume, cx+dx, y, cz+dz, base_color)

def generate_scene(volume, t):
    """Generate the complete hourglass scene"""
    generate_base_and_top(volume, CENTER_X, CENTER_Y, CENTER_Z)
    generate_glass_structure(volume, CENTER_X, CENTER_Y, CENTER_Z)
    generate_sand_particles(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    generate_glass_highlights(volume, CENTER_X, CENTER_Y, CENTER_Z, t)

# Initialize encoder
enc = splv.Encoder(SIZE, SIZE, SIZE, framerate=FPS, outputPath=OUT_PATH, motionVectors="off")

# Generate animation frames
for frame in tqdm(range(FRAMES), desc="Generating hourglass"):
    volume = np.zeros((SIZE, SIZE, SIZE, 4), dtype=np.uint8)
    t = (frame / FRAMES) * 2*np.pi
    generate_scene(volume, t)
    enc.encode(splv.Frame(volume, lrAxis="x", udAxis="y", fbAxis="z"))

enc.finish()
print(f"Created {OUT_PATH}")

Next steps

  • Increase SAND_PARTICLES for denser sand flow
  • Modify glass_color to change the glass tint
  • Adjust NECK_WIDTH to make sand flow faster or slower
  • Add + int(np.sin(t) * 2) to particle positions for gentle swaying motion
  • Change HOURGLASS_HEIGHT and HOURGLASS_WIDTH for different proportions