examples

76 interactive examples

hover example to preview

1

Snake 3D

audio
2

Creating Yoyo Animation

3

Creating Wooden Planks Animation

4

Creating Windstorm Animation

5

Creating Windmill Animation

6

Creating Whale Animation

7

Creating Waterfall Animation

8

Creating Volcano Animation

9

Creating Vaporwave Animation

10

Creating Tree Animation

11

Creating Tornado Animation

12

Creating Sun Animation

13

Creating Stone Wall Animation

14

Creating Spring Animation

15

Creating Spider Animation

16

Creating Spaceship Animation

17

Creating Solar System Educational Animation

18

Creating Solar System Animation

19

Creating Snowglobe Animation

20

Creating Snake Animation

21

Creating Sailboat Animation

22

Creating Robot Animation

23

Creating River Rapids Animation

24

Creating Rainbow Animation

25

Creating Prism Animation

26

Creating Pinwheel Animation

27

Creating Pine Tree Animation

28

Creating Phoenix Animation

29

Creating Pendulum Animation

30

Creating Octopus Animation

31

Creating Mushroom Animation

32

Creating Metronome Animation

33

Creating Meteor Animation

34

Creating Metal Plates Animation

35

Creating Lissajous Animation

36

Creating Lightning Animation

37

Creating Lighthouse Animation

38

Creating Lava Lamp Animation

39

Creating Lantern Animation

40

Creating Kite Animation

41

Creating Kaleidoscope Animation

42

Creating Jellyfish Animation

43

Creating Inner Planets Orbit Animation

44

Creating Hourglass Animation

45

Creating Hive Animation

46

Creating Grass Animation

47

Creating Geyser Animation

48

Creating Gear Animation

49

Creating Fountain Animation

50

Creating Flower Animation

51

Creating Fish Animation

52

Creating Fireworks Animation

53

Creating Fern Animation

54

Creating Earth Orbit Animation

55

Creating Dragon Animation

56

Creating Disco Ball Animation

57

Creating Demon Animation

58

Creating Crystallization Animation

59

Creating Crystal Animation

60

Creating Cosmic Formation Animation

61

Creating Coral Reef Animation

62

Creating Compass Animation

63

Creating Cloud Animation

64

Creating Clock Animation

65

Creating Castle Animation

66

Creating Carousel Animation

67

Creating Candle Animation

68

Creating Campfire Animation

69

Creating Cactus Animation

70

Creating Butterfly Animation

71

Creating Bush Animation

72

Creating Brick Wall Animation

73

Creating Blackhole Animation

74

Creating Beehive Animation

75

Creating Aurora Animation

76

🎈 Floating Balloons

hover for preview

Creating Meteor Animation

published on 8/21/2025
interactive example

Meteor - 3D Voxel Animation Guide

This guide walks you through how to generate a looping 3D voxel animation of a meteor using SpatialStudio. The script creates a fiery meteor streaking through space with a glowing trail, particle effects, and dynamic lighting inside a cubic 3D space, then saves the animation to a .splv file.


What this script does

  • Creates a 3D scene of size 128×128×128
  • Spawns 1 meteor, featuring:
    • A rocky, textured core with hot spots
    • A blazing particle trail that follows behind
    • Dynamic fire effects with varying intensity
    • Glowing sparks that scatter and fade
  • Animates the meteor streaking across space for 8 seconds at 30 FPS
  • Outputs the file meteor.splv that you can play in your viewer

How it works (simplified)

  1. Voxel volume Each frame is a 3D grid filled with RGBA values (SIZE × SIZE × SIZE × 4).

  2. Meteor core The meteor body is drawn as an irregular rocky sphere with hot glowing spots using noise functions.

  3. Particle trail A dynamic trail of fire particles follows the meteor, with colors transitioning from white-hot to deep red.

  4. Sparks and debris Random sparks fly off the meteor in all directions, creating a realistic burning effect.

  5. Motion path The meteor follows a diagonal trajectory across the 3D space with slight wobble for realism.

  6. Animation loop A normalized time variable t cycles from 0 → 2π, with the meteor's position wrapping smoothly.

  7. Encoding Frames are passed into splv.Encoder, which writes them into the .splv video file.


Try it yourself

Install requirements first:

pip install spatialstudio numpy tqdm

Then copy this script into meteor.py and run:

python meteor.py

Full Script

import numpy as np
from spatialstudio import splv
from tqdm import tqdm

# Scene setup
SIZE, FPS, SECONDS = 128, 30, 8
FRAMES = FPS * SECONDS
CENTER_X = CENTER_Y = CENTER_Z = SIZE // 2
OUT_PATH = "../outputs/meteor.splv"

# Meteor settings
METEOR_RADIUS = 6
TRAIL_LENGTH = 40
SPARK_COUNT = 15

def add_voxel(volume, x, y, z, color):
    if 0 <= x < SIZE and 0 <= y < SIZE and 0 <= z < SIZE:
        volume[x, y, z, :3] = color
        volume[x, y, z, 3] = 255

def noise_3d(x, y, z, scale=1.0):
    return (np.sin(x * scale) * np.cos(y * scale) + np.sin(z * scale)) * 0.5

def generate_meteor_core(volume, cx, cy, cz, t):
    # Rocky meteor colors
    rock_color = (80, 60, 40)
    hot_color = (255, 120, 0)
    
    for dx in range(-METEOR_RADIUS, METEOR_RADIUS+1):
        for dy in range(-METEOR_RADIUS, METEOR_RADIUS+1):
            for dz in range(-METEOR_RADIUS, METEOR_RADIUS+1):
                dist = np.sqrt(dx*dx + dy*dy + dz*dz)
                if dist <= METEOR_RADIUS:
                    # Add surface roughness
                    surface_noise = noise_3d(cx+dx, cy+dy, cz+dz, 0.3) + \
                                  noise_3d(cx+dx, cy+dy, cz+dz, 0.1) * 0.5
                    
                    if dist <= METEOR_RADIUS + surface_noise * 2:
                        # Hot spots on the meteor
                        heat = max(0, noise_3d(cx+dx, cy+dy, cz+dz + t, 0.2))
                        if heat > 0.3:
                            # Glowing hot spots
                            intensity = min(1.0, (heat - 0.3) * 2)
                            color = tuple(int(rock_color[i] * (1-intensity) + hot_color[i] * intensity) 
                                        for i in range(3))
                        else:
                            color = rock_color
                        
                        add_voxel(volume, cx+dx, cy+dy, cz+dz, color)

def generate_trail(volume, positions, t):
    trail_colors = [
        (255, 255, 255),  # White hot
        (255, 200, 100),  # Yellow
        (255, 150, 50),   # Orange
        (255, 100, 0),    # Red-orange
        (200, 50, 0),     # Deep red
        (100, 20, 0),     # Dark red
    ]
    
    for i, (tx, ty, tz) in enumerate(positions):
        if i >= len(trail_colors):
            break
            
        color = trail_colors[i]
        trail_size = max(1, METEOR_RADIUS - i // 2)
        
        # Add some randomness to trail particles
        for _ in range(max(1, 8 - i)):
            offset_x = int(np.random.normal(0, trail_size * 0.5))
            offset_y = int(np.random.normal(0, trail_size * 0.5))
            offset_z = int(np.random.normal(0, trail_size * 0.5))
            
            # Fade color based on distance from trail center
            fade = max(0.3, 1.0 - (abs(offset_x) + abs(offset_y) + abs(offset_z)) / (trail_size * 2))
            faded_color = tuple(int(c * fade) for c in color)
            
            add_voxel(volume, tx + offset_x, ty + offset_y, tz + offset_z, faded_color)

def generate_sparks(volume, cx, cy, cz, t):
    np.random.seed(int(t * 10))  # Deterministic randomness
    
    for i in range(SPARK_COUNT):
        # Random direction for each spark
        angle_h = np.random.uniform(0, 2*np.pi)
        angle_v = np.random.uniform(-np.pi/3, np.pi/3)
        speed = np.random.uniform(3, 8)
        
        # Spark position
        sx = cx + int(speed * np.cos(angle_h) * np.cos(angle_v))
        sy = cy + int(speed * np.sin(angle_v))
        sz = cz + int(speed * np.sin(angle_h) * np.cos(angle_v))
        
        # Spark colors (hot to cool)
        spark_colors = [(255, 255, 200), (255, 200, 100), (255, 100, 50)]
        color = spark_colors[i % len(spark_colors)]
        
        # Create small spark trails
        for j in range(3):
            trail_x = sx - int(j * 0.5 * np.cos(angle_h))
            trail_y = sy - int(j * 0.5 * np.sin(angle_v))
            trail_z = sz - int(j * 0.5 * np.sin(angle_h))
            
            fade = max(0.3, 1.0 - j * 0.3)
            faded_color = tuple(int(c * fade) for c in color)
            add_voxel(volume, trail_x, trail_y, trail_z, faded_color)

def generate_scene(volume, t):
    # Calculate meteor position (diagonal trajectory)
    progress = (t / (2*np.pi)) % 1.0
    
    # Meteor path with slight wobble
    base_x = int(SIZE * 0.2 + (SIZE * 0.6) * progress)
    base_y = int(SIZE * 0.8 - (SIZE * 0.6) * progress)  # Top to bottom
    base_z = int(SIZE * 0.3 + (SIZE * 0.4) * progress)
    
    # Add wobble
    wobble_x = int(3 * np.sin(t * 3.0))
    wobble_y = int(2 * np.cos(t * 2.5))
    wobble_z = int(2 * np.sin(t * 4.0))
    
    meteor_x = base_x + wobble_x
    meteor_y = base_y + wobble_y
    meteor_z = base_z + wobble_z
    
    # Store trail positions
    trail_positions = []
    for i in range(TRAIL_LENGTH):
        trail_progress = max(0, progress - i * 0.01)
        trail_base_x = int(SIZE * 0.2 + (SIZE * 0.6) * trail_progress)
        trail_base_y = int(SIZE * 0.8 - (SIZE * 0.6) * trail_progress)
        trail_base_z = int(SIZE * 0.3 + (SIZE * 0.4) * trail_progress)
        
        trail_t = t - i * 0.1
        trail_wobble_x = int(3 * np.sin(trail_t * 3.0))
        trail_wobble_y = int(2 * np.cos(trail_t * 2.5))
        trail_wobble_z = int(2 * np.sin(trail_t * 4.0))
        
        trail_positions.append((
            trail_base_x + trail_wobble_x,
            trail_base_y + trail_wobble_y,
            trail_base_z + trail_wobble_z
        ))
    
    # Generate meteor components
    generate_trail(volume, trail_positions, t)
    generate_meteor_core(volume, meteor_x, meteor_y, meteor_z, t)
    generate_sparks(volume, meteor_x, meteor_y, meteor_z, t)

enc = splv.Encoder(SIZE, SIZE, SIZE, framerate=FPS, outputPath=OUT_PATH, motionVectors="off")

for frame in tqdm(range(FRAMES), desc="Generating meteor"):
    volume = np.zeros((SIZE, SIZE, SIZE, 4), dtype=np.uint8)
    t = (frame / FRAMES) * 2*np.pi
    generate_scene(volume, t)
    enc.encode(splv.Frame(volume, lrAxis="x", udAxis="y", fbAxis="z"))

enc.finish()
print(f"Created {OUT_PATH}")

Next steps

  • Adjust METEOR_RADIUS to make the meteor larger or smaller.
  • Increase SPARK_COUNT for more dramatic particle effects.
  • Modify the trajectory by changing the path calculations in generate_scene().
  • Add multiple meteors by calling generate_meteor_core() multiple times with different positions.
  • Experiment with different color palettes in the trail and spark arrays.