examples

76 interactive examples

hover example to preview

1

Snake 3D

audio
2

Creating Yoyo Animation

3

Creating Wooden Planks Animation

4

Creating Windstorm Animation

5

Creating Windmill Animation

6

Creating Whale Animation

7

Creating Waterfall Animation

8

Creating Volcano Animation

9

Creating Vaporwave Animation

10

Creating Tree Animation

11

Creating Tornado Animation

12

Creating Sun Animation

13

Creating Stone Wall Animation

14

Creating Spring Animation

15

Creating Spider Animation

16

Creating Spaceship Animation

17

Creating Solar System Educational Animation

18

Creating Solar System Animation

19

Creating Snowglobe Animation

20

Creating Snake Animation

21

Creating Sailboat Animation

22

Creating Robot Animation

23

Creating River Rapids Animation

24

Creating Rainbow Animation

25

Creating Prism Animation

26

Creating Pinwheel Animation

27

Creating Pine Tree Animation

28

Creating Phoenix Animation

29

Creating Pendulum Animation

30

Creating Octopus Animation

31

Creating Mushroom Animation

32

Creating Metronome Animation

33

Creating Meteor Animation

34

Creating Metal Plates Animation

35

Creating Lissajous Animation

36

Creating Lightning Animation

37

Creating Lighthouse Animation

38

Creating Lava Lamp Animation

39

Creating Lantern Animation

40

Creating Kite Animation

41

Creating Kaleidoscope Animation

42

Creating Jellyfish Animation

43

Creating Inner Planets Orbit Animation

44

Creating Hourglass Animation

45

Creating Hive Animation

46

Creating Grass Animation

47

Creating Geyser Animation

48

Creating Gear Animation

49

Creating Fountain Animation

50

Creating Flower Animation

51

Creating Fish Animation

52

Creating Fireworks Animation

53

Creating Fern Animation

54

Creating Earth Orbit Animation

55

Creating Dragon Animation

56

Creating Disco Ball Animation

57

Creating Demon Animation

58

Creating Crystallization Animation

59

Creating Crystal Animation

60

Creating Cosmic Formation Animation

61

Creating Coral Reef Animation

62

Creating Compass Animation

63

Creating Cloud Animation

64

Creating Clock Animation

65

Creating Castle Animation

66

Creating Carousel Animation

67

Creating Candle Animation

68

Creating Campfire Animation

69

Creating Cactus Animation

70

Creating Butterfly Animation

71

Creating Bush Animation

72

Creating Brick Wall Animation

73

Creating Blackhole Animation

74

Creating Beehive Animation

75

Creating Aurora Animation

76

🎈 Floating Balloons

hover for preview

Creating Geyser Animation

published on 8/21/2025
interactive example

Creating a Geyser Animation with SpatialStudio

This guide walks you through how to generate a looping 3D voxel animation of a geyser using SpatialStudio. The script creates a realistic geyser that erupts with water particles, steam clouds, and rocky terrain inside a cubic 3D space, then saves the animation to a .splv file.


What this script does

  • Creates a 3D scene of size 128×128×128
  • Builds a rocky geyser base with natural stone textures
  • Animates a water eruption with:
    • Powerful water jet shooting upward
    • Scattered water droplets and splash effects
    • Rising steam clouds that dissipate
    • Cyclic eruption pattern with buildup and calm phases
  • Runs for 10 seconds at 30 FPS with realistic timing
  • Outputs the file geyser.splv that you can play in your viewer

How it works (simplified)

  1. Voxel volume Each frame is a 3D grid filled with RGBA values (SIZE × SIZE × SIZE × 4).

  2. Geyser base Rocky terrain is generated using noise patterns to create natural stone formations around the geyser opening.

  3. Water eruption The main water column uses physics-based height calculations with velocity and gravity simulation for realistic motion.

  4. Particle system Water droplets are spawned and animated with individual trajectories, creating splash effects around the main jet.

  5. Steam effects Semi-transparent white and gray particles rise and expand to simulate steam and mist.

  6. Animation cycle The eruption follows a realistic pattern: buildup → powerful eruption → gradual decline → calm period, then repeats.

  7. Encoding Frames are passed into splv.Encoder, which writes them into the .splv video file.


Try it yourself

Install requirements first:

pip install spatialstudio numpy tqdm

Then copy this script into geyser.py and run:

python geyser.py

Full Script

import numpy as np
from spatialstudio import splv
from tqdm import tqdm
import random

# Scene setup
SIZE, FPS, SECONDS = 128, 30, 10
FRAMES = FPS * SECONDS
CENTER_X = CENTER_Y = CENTER_Z = SIZE // 2
OUT_PATH = "../outputs/geyser.splv"

# Geyser settings
GEYSER_BASE_RADIUS = 12
GEYSER_OPENING_RADIUS = 4
MAX_ERUPTION_HEIGHT = 45
PARTICLE_COUNT = 150

def add_voxel(volume, x, y, z, color, alpha=255):
    if 0 <= x < SIZE and 0 <= y < SIZE and 0 <= z < SIZE:
        volume[x, y, z, :3] = color
        volume[x, y, z, 3] = alpha

def generate_terrain(volume, cx, cy, cz):
    """Generate rocky base terrain around the geyser"""
    rock_colors = [(120, 120, 120), (100, 90, 80), (140, 130, 120), (80, 75, 70)]
    
    for dx in range(-GEYSER_BASE_RADIUS, GEYSER_BASE_RADIUS+1):
        for dz in range(-GEYSER_BASE_RADIUS, GEYSER_BASE_RADIUS+1):
            dist = np.sqrt(dx*dx + dz*dz)
            if dist <= GEYSER_BASE_RADIUS:
                # Create height variation using noise
                height_noise = np.sin(dx*0.3) * np.cos(dz*0.3) + np.sin(dx*0.1 + dz*0.1)
                base_height = int(3 + height_noise * 2)
                
                # Create geyser opening
                if dist <= GEYSER_OPENING_RADIUS:
                    base_height = max(0, base_height - 2)
                
                for dy in range(base_height):
                    color_idx = int((dx + dz + dy) % len(rock_colors))
                    brightness = 0.8 + 0.4 * np.random.random()
                    rock_color = tuple(int(c * brightness) for c in rock_colors[color_idx])
                    add_voxel(volume, cx+dx, cy-5+dy, cz+dz, rock_color)

def get_eruption_strength(t, cycle_length=6.28):
    """Calculate eruption strength based on time (0-1)"""
    cycle_pos = (t % cycle_length) / cycle_length
    
    if cycle_pos < 0.1:  # Buildup phase
        return cycle_pos * 10 * 0.3
    elif cycle_pos < 0.4:  # Main eruption
        return 0.8 + 0.2 * np.sin(cycle_pos * 20)
    elif cycle_pos < 0.7:  # Decline
        return 0.9 * (1 - (cycle_pos - 0.4) / 0.3)
    else:  # Calm period
        return 0.1 * np.sin(cycle_pos * 10)

def generate_water_column(volume, cx, cy, cz, t):
    """Generate the main water eruption column"""
    water_colors = [(50, 150, 255), (70, 180, 255), (30, 130, 200)]
    strength = get_eruption_strength(t)
    max_height = int(MAX_ERUPTION_HEIGHT * strength)
    
    for height in range(max_height):
        # Water column gets thinner as it goes up
        radius = max(1, GEYSER_OPENING_RADIUS * (1 - height / (max_height + 10)))
        
        # Add turbulence to water flow
        turbulence = np.sin(height * 0.3 + t * 8) * np.cos(height * 0.2 + t * 6)
        offset_x = int(turbulence * (height / max_height) * 2)
        offset_z = int(np.cos(height * 0.25 + t * 7) * (height / max_height) * 1.5)
        
        for dx in range(-int(radius), int(radius)+1):
            for dz in range(-int(radius), int(radius)+1):
                if dx*dx + dz*dz <= radius*radius:
                    color = water_colors[int((height + dx + dz) % len(water_colors))]
                    alpha = max(100, 255 - int(height * 2))
                    add_voxel(volume, cx+dx+offset_x, cy+height, cz+dz+offset_z, color, alpha)

def generate_water_particles(volume, cx, cy, cz, t):
    """Generate scattered water droplets and splash effects"""
    strength = get_eruption_strength(t)
    particle_colors = [(80, 160, 255), (100, 180, 255), (60, 140, 200)]
    
    # Create deterministic but seemingly random particles
    for i in range(int(PARTICLE_COUNT * strength)):
        # Use deterministic randomness based on time and particle index
        seed = int(t * 10) * 1000 + i
        np.random.seed(seed % 10000)
        
        # Initial position near geyser opening
        start_radius = GEYSER_OPENING_RADIUS + np.random.random() * 3
        angle = np.random.random() * 2 * np.pi
        
        px = cx + start_radius * np.cos(angle)
        pz = cz + start_radius * np.sin(angle)
        
        # Particle physics
        initial_velocity = 15 + np.random.random() * 20 * strength
        gravity = 0.3
        time_offset = np.random.random() * 3
        particle_time = max(0, (t % 6.28) - time_offset)
        
        # Calculate position
        py = cy + initial_velocity * particle_time - 0.5 * gravity * particle_time * particle_time
        px += np.random.random() * 6 - 3  # Lateral drift
        pz += np.random.random() * 6 - 3
        
        if py > cy - 5:  # Only draw if above ground
            color = particle_colors[i % len(particle_colors)]
            alpha = max(50, int(255 * (1 - particle_time / 8)))
            add_voxel(volume, int(px), int(py), int(pz), color, alpha)

def generate_steam(volume, cx, cy, cz, t):
    """Generate rising steam clouds"""
    steam_colors = [(220, 220, 220), (200, 200, 200), (180, 180, 180)]
    strength = get_eruption_strength(t)
    
    for i in range(int(80 * strength)):
        # Deterministic steam particles
        seed = int(t * 5) * 500 + i + 50000
        np.random.seed(seed % 10000)
        
        # Steam rises from hot water
        steam_radius = 8 + np.random.random() * 12
        angle = np.random.random() * 2 * np.pi
        height_factor = np.random.random()
        
        sx = cx + steam_radius * np.cos(angle) * height_factor
        sz = cz + steam_radius * np.sin(angle) * height_factor
        sy = cy + 5 + height_factor * 30
        
        # Steam drifts and expands
        drift = np.sin(t * 2 + i * 0.1) * 3
        sx += drift
        sz += np.cos(t * 1.5 + i * 0.15) * 2
        
        color = steam_colors[i % len(steam_colors)]
        alpha = max(20, int(120 * (1 - height_factor) * strength))
        add_voxel(volume, int(sx), int(sy), int(sz), color, alpha)

def generate_scene(volume, t):
    """Generate complete geyser scene"""
    generate_terrain(volume, CENTER_X, CENTER_Y, CENTER_Z)
    generate_water_column(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    generate_water_particles(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    generate_steam(volume, CENTER_X, CENTER_Y, CENTER_Z, t)

# Initialize encoder
enc = splv.Encoder(SIZE, SIZE, SIZE, framerate=FPS, outputPath=OUT_PATH, motionVectors="off")

# Generate animation frames
for frame in tqdm(range(FRAMES), desc="Generating geyser"):
    volume = np.zeros((SIZE, SIZE, SIZE, 4), dtype=np.uint8)
    t = (frame / FRAMES) * 2 * np.pi * (SECONDS / 6)  # Adjust for eruption cycle
    generate_scene(volume, t)
    enc.encode(splv.Frame(volume, lrAxis="x", udAxis="y", fbAxis="z"))

enc.finish()
print(f"Created {OUT_PATH}")

Next steps

  • Adjust MAX_ERUPTION_HEIGHT to make the geyser more or less powerful
  • Change PARTICLE_COUNT to add more water droplets and splash effects
  • Modify the eruption cycle timing in get_eruption_strength() for different patterns
  • Experiment with rock_colors to create different terrain types
  • Add more steam by increasing the steam particle count
  • Try different water_colors for unique water effects