examples

76 interactive examples

hover example to preview

1

Snake 3D

audio
2

Creating Yoyo Animation

3

Creating Wooden Planks Animation

4

Creating Windstorm Animation

5

Creating Windmill Animation

6

Creating Whale Animation

7

Creating Waterfall Animation

8

Creating Volcano Animation

9

Creating Vaporwave Animation

10

Creating Tree Animation

11

Creating Tornado Animation

12

Creating Sun Animation

13

Creating Stone Wall Animation

14

Creating Spring Animation

15

Creating Spider Animation

16

Creating Spaceship Animation

17

Creating Solar System Educational Animation

18

Creating Solar System Animation

19

Creating Snowglobe Animation

20

Creating Snake Animation

21

Creating Sailboat Animation

22

Creating Robot Animation

23

Creating River Rapids Animation

24

Creating Rainbow Animation

25

Creating Prism Animation

26

Creating Pinwheel Animation

27

Creating Pine Tree Animation

28

Creating Phoenix Animation

29

Creating Pendulum Animation

30

Creating Octopus Animation

31

Creating Mushroom Animation

32

Creating Metronome Animation

33

Creating Meteor Animation

34

Creating Metal Plates Animation

35

Creating Lissajous Animation

36

Creating Lightning Animation

37

Creating Lighthouse Animation

38

Creating Lava Lamp Animation

39

Creating Lantern Animation

40

Creating Kite Animation

41

Creating Kaleidoscope Animation

42

Creating Jellyfish Animation

43

Creating Inner Planets Orbit Animation

44

Creating Hourglass Animation

45

Creating Hive Animation

46

Creating Grass Animation

47

Creating Geyser Animation

48

Creating Gear Animation

49

Creating Fountain Animation

50

Creating Flower Animation

51

Creating Fish Animation

52

Creating Fireworks Animation

53

Creating Fern Animation

54

Creating Earth Orbit Animation

55

Creating Dragon Animation

56

Creating Disco Ball Animation

57

Creating Demon Animation

58

Creating Crystallization Animation

59

Creating Crystal Animation

60

Creating Cosmic Formation Animation

61

Creating Coral Reef Animation

62

Creating Compass Animation

63

Creating Cloud Animation

64

Creating Clock Animation

65

Creating Castle Animation

66

Creating Carousel Animation

67

Creating Candle Animation

68

Creating Campfire Animation

69

Creating Cactus Animation

70

Creating Butterfly Animation

71

Creating Bush Animation

72

Creating Brick Wall Animation

73

Creating Blackhole Animation

74

Creating Beehive Animation

75

Creating Aurora Animation

76

🎈 Floating Balloons

hover for preview

Creating Solar System Animation

published on 8/21/2025
interactive example

Solar System - 3D Voxel Animation Tutorial

This guide walks you through how to generate a looping 3D voxel animation of a solar system using SpatialStudio. The script creates a miniature solar system with planets orbiting around a glowing sun inside a cubic 3D space, then saves the animation to a .splv file.


What this script does

  • Creates a 3D scene of size 128×128×128
  • Spawns a central sun with a glowing effect
  • Creates 6 planets of different sizes, each with:
    • Unique orbital paths and speeds
    • Realistic colors and textures
    • Some planets have small moons
  • Animates orbital motion for 12 seconds at 30 FPS
  • Outputs the file solar_system.splv that you can play in your viewer

How it works (simplified)

  1. Voxel volume Each frame is a 3D grid filled with RGBA values (SIZE × SIZE × SIZE × 4).

  2. Central sun A bright yellow-orange sphere at the center with animated glow effects and surface detail.

  3. Planetary orbits Each planet follows circular orbital paths at different distances and speeds using trigonometric functions.

  4. Planet rendering Planets are drawn as spheres with color variations and surface textures using noise functions.

  5. Moons Some planets have smaller orbiting bodies that follow sub-orbital paths.

  6. Animation loop A normalized time variable t cycles from 0 → 2π, ensuring all orbital motions loop smoothly.

  7. Encoding Frames are passed into splv.Encoder, which writes them into the .splv video file.


Try it yourself

Install requirements first:

pip install spatialstudio numpy tqdm

Then copy this script into solar_system.py and run:

python solar_system.py

Full Script

import numpy as np
from spatialstudio import splv
from tqdm import tqdm

# Scene setup
SIZE, FPS, SECONDS = 128, 30, 12
FRAMES = FPS * SECONDS
CENTER_X = CENTER_Y = CENTER_Z = SIZE // 2
OUT_PATH = "../outputs/solar_system.splv"

# Solar system settings
SUN_RADIUS = 8
PLANET_COUNT = 6

def add_voxel(volume, x, y, z, color):
    if 0 <= x < SIZE and 0 <= y < SIZE and 0 <= z < SIZE:
        volume[x, y, z, :3] = color
        volume[x, y, z, 3] = 255

def generate_sun(volume, cx, cy, cz, t):
    sun_color = (255, 200, 50)
    glow_color = (255, 150, 0)
    
    # Main sun body with animated surface
    for dx in range(-SUN_RADIUS, SUN_RADIUS+1):
        for dy in range(-SUN_RADIUS, SUN_RADIUS+1):
            for dz in range(-SUN_RADIUS, SUN_RADIUS+1):
                dist = np.sqrt(dx*dx + dy*dy + dz*dz)
                if dist <= SUN_RADIUS:
                    # Animated surface detail
                    surface_noise = np.sin(dx*0.4 + t*2) + np.cos(dy*0.3 + t*1.5) + np.sin(dz*0.5 + t*2.5)
                    brightness = 1.0 + surface_noise * 0.15
                    final_color = tuple(min(255, int(c * brightness)) for c in sun_color)
                    add_voxel(volume, cx+dx, cy+dy, cz+dz, final_color)
    
    # Glow effect
    glow_radius = SUN_RADIUS + 3
    for dx in range(-glow_radius, glow_radius+1):
        for dy in range(-glow_radius, glow_radius+1):
            for dz in range(-glow_radius, glow_radius+1):
                dist = np.sqrt(dx*dx + dy*dy + dz*dz)
                if SUN_RADIUS < dist <= glow_radius:
                    glow_intensity = 1.0 - (dist - SUN_RADIUS) / 3.0
                    if np.random.random() < glow_intensity * 0.3:
                        add_voxel(volume, cx+dx, cy+dy, cz+dz, glow_color)

def generate_planet(volume, cx, cy, cz, radius, color, t, planet_id):
    for dx in range(-radius, radius+1):
        for dy in range(-radius, radius+1):
            for dz in range(-radius, radius+1):
                dist = np.sqrt(dx*dx + dy*dy + dz*dz)
                if dist <= radius:
                    # Planet surface texture
                    texture = np.sin(dx*0.5 + planet_id) + np.cos(dy*0.4 + planet_id*2) + np.sin(dz*0.6 + t*0.5)
                    brightness = 1.0 + texture * 0.2
                    final_color = tuple(min(255, max(50, int(c * brightness))) for c in color)
                    add_voxel(volume, cx+dx, cy+dy, cz+dz, final_color)

def generate_moon(volume, cx, cy, cz, t, planet_angle, moon_orbit_radius):
    moon_radius = 2
    moon_color = (180, 180, 180)
    
    # Moon orbits around planet position
    moon_angle = t * 4.0  # Moons orbit faster
    moon_x = cx + int(moon_orbit_radius * np.cos(moon_angle))
    moon_z = cz + int(moon_orbit_radius * np.sin(moon_angle))
    
    for dx in range(-moon_radius, moon_radius+1):
        for dy in range(-moon_radius, moon_radius+1):
            for dz in range(-moon_radius, moon_radius+1):
                if dx*dx + dy*dy + dz*dz <= moon_radius*moon_radius:
                    add_voxel(volume, moon_x+dx, cy+dy, moon_z+dz, moon_color)

def generate_planets(volume, cx, cy, cz, t):
    # Planet data: (orbit_radius, planet_radius, color, orbital_speed, has_moon, moon_orbit_radius)
    planets = [
        (20, 3, (255, 100, 100), 1.2, False, 0),      # Mercury-like (red)
        (28, 4, (255, 200, 100), 1.0, False, 0),      # Venus-like (yellow)
        (36, 4, (100, 150, 255), 0.8, True, 8),       # Earth-like (blue) with moon
        (45, 3, (255, 100, 50), 0.6, True, 6),        # Mars-like (red-orange) with moon
        (55, 6, (200, 150, 100), 0.4, True, 12),      # Jupiter-like (brown) with moon
        (65, 5, (150, 150, 200), 0.3, False, 0),      # Saturn-like (pale blue)
    ]
    
    for i, (orbit_radius, planet_radius, color, speed, has_moon, moon_orbit_radius) in enumerate(planets):
        # Calculate planet position
        angle = t * speed + i * np.pi / 3  # Offset each planet's starting position
        px = cx + int(orbit_radius * np.cos(angle))
        pz = cz + int(orbit_radius * np.sin(angle))
        py = cy + int(3 * np.sin(t * 0.5 + i))  # Slight vertical oscillation
        
        # Generate planet
        generate_planet(volume, px, py, pz, planet_radius, color, t, i)
        
        # Generate moon if planet has one
        if has_moon:
            generate_moon(volume, px, py, pz, t, angle, moon_orbit_radius)

def generate_orbital_trails(volume, cx, cy, cz, t):
    # Optional: Add faint orbital trail particles
    trail_color = (50, 50, 80)
    orbit_radii = [20, 28, 36, 45, 55, 65]
    
    for radius in orbit_radii:
        for angle_step in range(0, 360, 15):
            angle = np.radians(angle_step)
            tx = cx + int(radius * np.cos(angle))
            tz = cz + int(radius * np.sin(angle))
            if np.random.random() < 0.1:  # Sparse trail effect
                add_voxel(volume, tx, cy, tz, trail_color)

def generate_scene(volume, t):
    # Generate sun at center
    generate_sun(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    
    # Generate orbiting planets
    generate_planets(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    
    # Generate orbital trails (optional visual effect)
    generate_orbital_trails(volume, CENTER_X, CENTER_Y, CENTER_Z, t)

enc = splv.Encoder(SIZE, SIZE, SIZE, framerate=FPS, outputPath=OUT_PATH, motionVectors="off")

for frame in tqdm(range(FRAMES), desc="Generating solar system"):
    volume = np.zeros((SIZE, SIZE, SIZE, 4), dtype=np.uint8)
    t = (frame / FRAMES) * 2*np.pi
    generate_scene(volume, t)
    enc.encode(splv.Frame(volume, lrAxis="x", udAxis="y", fbAxis="z"))

enc.finish()
print(f"Created {OUT_PATH}")

Next steps

  • Modify the planets array to add more celestial bodies or change their properties
  • Adjust orbital speeds to create different animation rhythms
  • Add asteroid belts by generating small particles between planet orbits
  • Experiment with different planet colors and textures
  • Create elliptical orbits by modifying the trigonometric calculations
  • Add Saturn-like rings around larger planets