examples

76 interactive examples

hover example to preview

1

Snake 3D

audio
2

Creating Yoyo Animation

3

Creating Wooden Planks Animation

4

Creating Windstorm Animation

5

Creating Windmill Animation

6

Creating Whale Animation

7

Creating Waterfall Animation

8

Creating Volcano Animation

9

Creating Vaporwave Animation

10

Creating Tree Animation

11

Creating Tornado Animation

12

Creating Sun Animation

13

Creating Stone Wall Animation

14

Creating Spring Animation

15

Creating Spider Animation

16

Creating Spaceship Animation

17

Creating Solar System Educational Animation

18

Creating Solar System Animation

19

Creating Snowglobe Animation

20

Creating Snake Animation

21

Creating Sailboat Animation

22

Creating Robot Animation

23

Creating River Rapids Animation

24

Creating Rainbow Animation

25

Creating Prism Animation

26

Creating Pinwheel Animation

27

Creating Pine Tree Animation

28

Creating Phoenix Animation

29

Creating Pendulum Animation

30

Creating Octopus Animation

31

Creating Mushroom Animation

32

Creating Metronome Animation

33

Creating Meteor Animation

34

Creating Metal Plates Animation

35

Creating Lissajous Animation

36

Creating Lightning Animation

37

Creating Lighthouse Animation

38

Creating Lava Lamp Animation

39

Creating Lantern Animation

40

Creating Kite Animation

41

Creating Kaleidoscope Animation

42

Creating Jellyfish Animation

43

Creating Inner Planets Orbit Animation

44

Creating Hourglass Animation

45

Creating Hive Animation

46

Creating Grass Animation

47

Creating Geyser Animation

48

Creating Gear Animation

49

Creating Fountain Animation

50

Creating Flower Animation

51

Creating Fish Animation

52

Creating Fireworks Animation

53

Creating Fern Animation

54

Creating Earth Orbit Animation

55

Creating Dragon Animation

56

Creating Disco Ball Animation

57

Creating Demon Animation

58

Creating Crystallization Animation

59

Creating Crystal Animation

60

Creating Cosmic Formation Animation

61

Creating Coral Reef Animation

62

Creating Compass Animation

63

Creating Cloud Animation

64

Creating Clock Animation

65

Creating Castle Animation

66

Creating Carousel Animation

67

Creating Candle Animation

68

Creating Campfire Animation

69

Creating Cactus Animation

70

Creating Butterfly Animation

71

Creating Bush Animation

72

Creating Brick Wall Animation

73

Creating Blackhole Animation

74

Creating Beehive Animation

75

Creating Aurora Animation

76

🎈 Floating Balloons

hover for preview

Creating Earth Orbit Animation

published on 8/21/2025
interactive example

Earth Orbit Animation - 3D Voxel Learning Example

This guide walks you through how to generate a looping 3D voxel animation of Earth orbiting the Sun using SpatialStudio. The script creates a realistic solar system scene with Earth rotating on its axis while orbiting around a glowing Sun, then saves the animation to a .splv file.


What this script does

  • Creates a 3D scene of size 128×128×128
  • Renders a glowing Sun at the center with:
    • Dynamic solar flares
    • Pulsing brightness effects
    • Radiating heat particles
  • Animates Earth with realistic motion:
    • Orbital revolution around the Sun
    • Axial rotation (day/night cycle)
    • Blue oceans and green/brown continents
    • Atmospheric glow effect
  • Runs for 12 seconds at 30 FPS for a complete orbit
  • Outputs the file earth_orbit.splv that you can play in your viewer

How it works (simplified)

  1. Voxel volume Each frame is a 3D grid filled with RGBA values (SIZE × SIZE × SIZE × 4).

  2. Sun rendering The Sun is drawn as a large glowing sphere with animated surface details and particle effects.

  3. Earth generation Earth features procedurally generated continents using noise functions and rotates to show different faces.

  4. Orbital mechanics Earth follows an elliptical path around the Sun while spinning on its own axis at a realistic speed ratio.

  5. Lighting effects The Sun-facing side of Earth is brighter, with atmospheric scattering creating a blue rim effect.

  6. Animation loop A normalized time variable t cycles from 0 → 2π, ensuring one complete orbit loops smoothly.

  7. Encoding Frames are passed into splv.Encoder, which writes them into the .splv video file.


Try it yourself

Install requirements first:

pip install spatialstudio numpy tqdm

Then copy this script into earth_orbit.py and run:

python earth_orbit.py

Full Script

import numpy as np
from spatialstudio import splv
from tqdm import tqdm

# Scene setup
SIZE, FPS, SECONDS = 128, 30, 12
FRAMES = FPS * SECONDS
CENTER_X = CENTER_Y = CENTER_Z = SIZE // 2
OUT_PATH = "../outputs/earth_orbit.splv"

# Celestial body settings
SUN_RADIUS = 12
EARTH_RADIUS = 4
ORBIT_RADIUS = 35
EARTH_ROTATION_SPEED = 8.0  # Earth spins faster than it orbits

def add_voxel(volume, x, y, z, color):
    if 0 <= x < SIZE and 0 <= y < SIZE and 0 <= z < SIZE:
        volume[x, y, z, :3] = color
        volume[x, y, z, 3] = 255

def noise_3d(x, y, z, scale=0.1):
    """Simple 3D noise function for terrain generation"""
    return np.sin(x*scale) * np.cos(y*scale*1.3) * np.sin(z*scale*0.7)

def generate_sun(volume, cx, cy, cz, t):
    """Generate animated sun with solar flares"""
    base_color = (255, 200, 50)
    
    for dx in range(-SUN_RADIUS-3, SUN_RADIUS+4):
        for dy in range(-SUN_RADIUS-3, SUN_RADIUS+4):
            for dz in range(-SUN_RADIUS-3, SUN_RADIUS+4):
                dist = np.sqrt(dx*dx + dy*dy + dz*dz)
                
                # Sun core
                if dist <= SUN_RADIUS:
                    flare = np.sin(dx*0.2 + dy*0.3 + dz*0.1 + t*2.0) * 0.3
                    pulse = 1.0 + np.sin(t*3.0) * 0.2
                    intensity = (1.0 + flare) * pulse
                    
                    color = tuple(min(255, max(0, int(c * intensity))) for c in base_color)
                    add_voxel(volume, cx+dx, cy+dy, cz+dz, color)
                
                # Solar corona
                elif dist <= SUN_RADIUS + 3:
                    corona_intensity = max(0, 1.0 - (dist - SUN_RADIUS) / 3.0)
                    corona_flicker = np.sin(t*4.0 + dist*0.5) * 0.5 + 0.5
                    final_intensity = corona_intensity * corona_flicker * 0.7
                    
                    if final_intensity > 0.3:
                        corona_color = (int(255*final_intensity), int(150*final_intensity), int(20*final_intensity))
                        add_voxel(volume, cx+dx, cy+dy, cz+dz, corona_color)

def generate_earth(volume, cx, cy, cz, rotation_t, t):
    """Generate Earth with continents, oceans, and atmosphere"""
    
    for dx in range(-EARTH_RADIUS-2, EARTH_RADIUS+3):
        for dy in range(-EARTH_RADIUS-2, EARTH_RADIUS+3):
            for dz in range(-EARTH_RADIUS-2, EARTH_RADIUS+3):
                dist = np.sqrt(dx*dx + dy*dy + dz*dz)
                
                if dist <= EARTH_RADIUS:
                    # Rotate the sampling point
                    rot_x = dx * np.cos(rotation_t) - dz * np.sin(rotation_t)
                    rot_z = dx * np.sin(rotation_t) + dz * np.cos(rotation_t)
                    
                    # Generate terrain
                    terrain = noise_3d(rot_x, dy, rot_z, 0.3)
                    
                    # Determine surface type
                    if terrain > 0.1:  # Land
                        if dy > EARTH_RADIUS * 0.3:  # Mountains/arctic
                            color = (139, 90, 43) if terrain > 0.3 else (34, 139, 34)
                        else:  # Forests/plains
                            color = (34, 139, 34) if terrain > 0.25 else (160, 82, 45)
                    else:  # Ocean
                        depth = abs(terrain)
                        blue_intensity = int(255 - depth * 100)
                        color = (0, 50, max(100, blue_intensity))
                    
                    # Apply lighting based on sun direction
                    sun_dir = np.array([-cx + CENTER_X, -cy + CENTER_Y, -cz + CENTER_Z])
                    if np.linalg.norm(sun_dir) > 0:
                        sun_dir = sun_dir / np.linalg.norm(sun_dir)
                        normal = np.array([dx, dy, dz]) / dist if dist > 0 else np.array([0, 1, 0])
                        lighting = max(0.3, np.dot(normal, sun_dir) * 0.7 + 0.3)
                        color = tuple(int(c * lighting) for c in color)
                    
                    add_voxel(volume, cx+dx, cy+dy, cz+dz, color)
                
                # Atmosphere
                elif dist <= EARTH_RADIUS + 2:
                    atmo_intensity = max(0, 1.0 - (dist - EARTH_RADIUS) / 2.0)
                    if atmo_intensity > 0.4:
                        atmo_color = (int(100*atmo_intensity), int(150*atmo_intensity), int(255*atmo_intensity))
                        add_voxel(volume, cx+dx, cy+dy, cz+dz, atmo_color)

def generate_orbit_trail(volume, cx, cy, cz, t, trail_length=50):
    """Generate a faint orbital trail behind Earth"""
    trail_color = (100, 100, 200)
    
    for i in range(trail_length):
        trail_t = t - (i / trail_length) * 0.5
        trail_x = cx + int(ORBIT_RADIUS * np.cos(trail_t))
        trail_z = cz + int(ORBIT_RADIUS * np.sin(trail_t))
        
        alpha = max(0, 1.0 - (i / trail_length))
        if alpha > 0.1:
            faded_color = tuple(int(c * alpha * 0.3) for c in trail_color)
            add_voxel(volume, trail_x, cy, trail_z, faded_color)

def generate_scene(volume, t):
    """Generate complete solar system scene"""
    # Generate Sun at center
    generate_sun(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    
    # Calculate Earth position (orbital motion)
    earth_x = CENTER_X + int(ORBIT_RADIUS * np.cos(t))
    earth_z = CENTER_Z + int(ORBIT_RADIUS * np.sin(t))
    earth_y = CENTER_Y + int(3 * np.sin(t * 0.1))  # Slight vertical oscillation
    
    # Calculate Earth rotation (spinning on axis)
    earth_rotation = t * EARTH_ROTATION_SPEED
    
    # Generate orbital trail
    generate_orbit_trail(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    
    # Generate Earth
    generate_earth(volume, earth_x, earth_y, earth_z, earth_rotation, t)

# Initialize encoder
enc = splv.Encoder(SIZE, SIZE, SIZE, framerate=FPS, outputPath=OUT_PATH, motionVectors="off")

# Generate animation frames
for frame in tqdm(range(FRAMES), desc="Generating Earth orbit"):
    volume = np.zeros((SIZE, SIZE, SIZE, 4), dtype=np.uint8)
    t = (frame / FRAMES) * 2 * np.pi  # Complete orbit over animation duration
    generate_scene(volume, t)
    enc.encode(splv.Frame(volume, lrAxis="x", udAxis="y", fbAxis="z"))

enc.finish()
print(f"Created {OUT_PATH}")

Next steps

  • Adjust ORBIT_RADIUS to change Earth's distance from the Sun
  • Modify EARTH_ROTATION_SPEED to change day/night cycle speed
  • Add more planets by duplicating the Earth generation with different parameters
  • Experiment with SECONDS to create longer or shorter orbital periods
  • Try adding a moon by creating a smaller sphere orbiting Earth
  • Enhance the terrain generation by tweaking the noise_3d function parameters