examples

76 interactive examples

hover example to preview

1

Snake 3D

audio
2

Creating Yoyo Animation

3

Creating Wooden Planks Animation

4

Creating Windstorm Animation

5

Creating Windmill Animation

6

Creating Whale Animation

7

Creating Waterfall Animation

8

Creating Volcano Animation

9

Creating Vaporwave Animation

10

Creating Tree Animation

11

Creating Tornado Animation

12

Creating Sun Animation

13

Creating Stone Wall Animation

14

Creating Spring Animation

15

Creating Spider Animation

16

Creating Spaceship Animation

17

Creating Solar System Educational Animation

18

Creating Solar System Animation

19

Creating Snowglobe Animation

20

Creating Snake Animation

21

Creating Sailboat Animation

22

Creating Robot Animation

23

Creating River Rapids Animation

24

Creating Rainbow Animation

25

Creating Prism Animation

26

Creating Pinwheel Animation

27

Creating Pine Tree Animation

28

Creating Phoenix Animation

29

Creating Pendulum Animation

30

Creating Octopus Animation

31

Creating Mushroom Animation

32

Creating Metronome Animation

33

Creating Meteor Animation

34

Creating Metal Plates Animation

35

Creating Lissajous Animation

36

Creating Lightning Animation

37

Creating Lighthouse Animation

38

Creating Lava Lamp Animation

39

Creating Lantern Animation

40

Creating Kite Animation

41

Creating Kaleidoscope Animation

42

Creating Jellyfish Animation

43

Creating Inner Planets Orbit Animation

44

Creating Hourglass Animation

45

Creating Hive Animation

46

Creating Grass Animation

47

Creating Geyser Animation

48

Creating Gear Animation

49

Creating Fountain Animation

50

Creating Flower Animation

51

Creating Fish Animation

52

Creating Fireworks Animation

53

Creating Fern Animation

54

Creating Earth Orbit Animation

55

Creating Dragon Animation

56

Creating Disco Ball Animation

57

Creating Demon Animation

58

Creating Crystallization Animation

59

Creating Crystal Animation

60

Creating Cosmic Formation Animation

61

Creating Coral Reef Animation

62

Creating Compass Animation

63

Creating Cloud Animation

64

Creating Clock Animation

65

Creating Castle Animation

66

Creating Carousel Animation

67

Creating Candle Animation

68

Creating Campfire Animation

69

Creating Cactus Animation

70

Creating Butterfly Animation

71

Creating Bush Animation

72

Creating Brick Wall Animation

73

Creating Blackhole Animation

74

Creating Beehive Animation

75

Creating Aurora Animation

76

🎈 Floating Balloons

hover for preview

Creating Sun Animation

published on 8/21/2025
interactive example

Sun - 3D Voxel Animation Learning Example

This guide walks you through how to generate a looping 3D voxel animation of the sun using SpatialStudio. The script creates a glowing, pulsating sun with solar flares, corona effects, and dynamic surface textures inside a cubic 3D space, then saves the animation to a .splv file.


What this script does

  • Creates a 3D scene of size 128×128×128
  • Spawns 1 radiant sun with:
    • A spherical voxel core with animated surface textures
    • Pulsating glow effects that change brightness over time
    • Dynamic solar flares extending outward
    • A shimmering corona atmosphere
  • Animates the sun burning and glowing for 8 seconds at 30 FPS
  • Outputs the file sun.splv that you can play in your viewer

How it works (simplified)

  1. Voxel volume Each frame is a 3D grid filled with RGBA values (SIZE × SIZE × SIZE × 4).

  2. Sun core The main body is drawn as a sphere with noise-based surface variations to simulate solar activity.

  3. Glow layers Multiple transparent layers around the core create a realistic atmospheric glow effect.

  4. Solar flares Random flame-like extensions shoot outward from the surface, animated with sine waves.

  5. Corona effect A subtle outer atmosphere with particle-like sparkles that shimmer and fade.

  6. Animation loop A normalized time variable t cycles from 0 → 2π, making the pulsing and flares loop smoothly.

  7. Encoding Frames are passed into splv.Encoder, which writes them into the .splv video file.


Try it yourself

Install requirements first:

pip install spatialstudio numpy tqdm

Then copy this script into sun.py and run:

python sun.py

Full Script

import numpy as np
from spatialstudio import splv
from tqdm import tqdm

# Scene setup
SIZE, FPS, SECONDS = 128, 30, 8
FRAMES = FPS * SECONDS
CENTER_X = CENTER_Y = CENTER_Z = SIZE // 2
OUT_PATH = "../outputs/sun.splv"

# Sun settings
SUN_RADIUS = 25
GLOW_RADIUS = 35
CORONA_RADIUS = 45
FLARE_COUNT = 12

def add_voxel(volume, x, y, z, color, alpha=255):
    if 0 <= x < SIZE and 0 <= y < SIZE and 0 <= z < SIZE:
        volume[x, y, z, :3] = color
        volume[x, y, z, 3] = alpha

def generate_sun_core(volume, cx, cy, cz, t):
    core_colors = [(255, 200, 0), (255, 150, 0), (255, 100, 0)]
    
    for dx in range(-SUN_RADIUS, SUN_RADIUS+1):
        for dy in range(-SUN_RADIUS, SUN_RADIUS+1):
            for dz in range(-SUN_RADIUS, SUN_RADIUS+1):
                distance = np.sqrt(dx*dx + dy*dy + dz*dz)
                if distance <= SUN_RADIUS:
                    # Surface noise for solar activity
                    noise = np.sin(dx*0.2 + t*2) * np.cos(dy*0.2 + t*1.5) * np.sin(dz*0.2 + t*2.2)
                    surface_variance = int(noise * 3)
                    
                    # Pulsating brightness
                    pulse = 0.8 + 0.2 * np.sin(t * 3.0)
                    
                    # Color based on distance from center
                    color_index = min(2, int(distance / SUN_RADIUS * 3))
                    base_color = core_colors[color_index]
                    
                    # Apply brightness variation
                    final_color = tuple(min(255, int(c * pulse * (1 + surface_variance * 0.1))) for c in base_color)
                    add_voxel(volume, cx+dx, cy+dy, cz+dz, final_color)

def generate_glow_layer(volume, cx, cy, cz, t):
    glow_color = (255, 200, 100)
    
    for dx in range(-GLOW_RADIUS, GLOW_RADIUS+1):
        for dy in range(-GLOW_RADIUS, GLOW_RADIUS+1):
            for dz in range(-GLOW_RADIUS, GLOW_RADIUS+1):
                distance = np.sqrt(dx*dx + dy*dy + dz*dz)
                if SUN_RADIUS < distance <= GLOW_RADIUS:
                    # Glow intensity decreases with distance
                    intensity = 1.0 - ((distance - SUN_RADIUS) / (GLOW_RADIUS - SUN_RADIUS))
                    
                    # Pulsating glow
                    pulse = 0.6 + 0.4 * np.sin(t * 2.5 + distance * 0.1)
                    
                    alpha = int(intensity * pulse * 120)
                    if alpha > 10:  # Only add visible glow
                        add_voxel(volume, cx+dx, cy+dy, cz+dz, glow_color, alpha)

def generate_solar_flares(volume, cx, cy, cz, t):
    flare_color = (255, 180, 0)
    
    for i in range(FLARE_COUNT):
        # Flare direction
        angle_xy = (i / FLARE_COUNT) * 2 * np.pi
        angle_z = np.sin(i * 0.7) * 0.5
        
        # Flare animation
        flare_length = SUN_RADIUS + int(15 * np.sin(t * 1.5 + i * 0.5) + 10)
        
        # Generate flare particles
        for length in range(SUN_RADIUS + 2, flare_length):
            # Flare gets thinner as it extends
            thickness = max(1, 4 - int((length - SUN_RADIUS) / 8))
            
            base_x = cx + int(length * np.cos(angle_xy) * np.cos(angle_z))
            base_y = cy + int(length * np.sin(angle_xy) * np.cos(angle_z))
            base_z = cz + int(length * np.sin(angle_z))
            
            # Add thickness to flare
            for tx in range(-thickness, thickness+1):
                for ty in range(-thickness, thickness+1):
                    if tx*tx + ty*ty <= thickness*thickness:
                        # Flare intensity decreases with distance
                        intensity = 1.0 - ((length - SUN_RADIUS) / (flare_length - SUN_RADIUS))
                        alpha = int(intensity * 180)
                        
                        if alpha > 20:
                            add_voxel(volume, base_x+tx, base_y+ty, base_z, flare_color, alpha)

def generate_corona(volume, cx, cy, cz, t):
    corona_color = (255, 255, 200)
    
    # Sparse corona particles
    particle_count = int(200 + 50 * np.sin(t * 2.0))
    
    for i in range(particle_count):
        # Random positions around the sun
        angle = (i / particle_count) * 4 * np.pi + t * 0.5
        radius = GLOW_RADIUS + np.random.random() * (CORONA_RADIUS - GLOW_RADIUS)
        
        x = cx + int(radius * np.cos(angle) * np.sin(i * 0.7))
        y = cy + int(radius * np.sin(angle) * np.sin(i * 0.7))
        z = cz + int(radius * np.cos(i * 0.7))
        
        # Twinkling effect
        twinkle = np.sin(t * 4.0 + i * 0.3) * 0.5 + 0.5
        alpha = int(twinkle * 80)
        
        if alpha > 15:
            add_voxel(volume, x, y, z, corona_color, alpha)

def generate_sun_scene(volume, t):
    generate_sun_core(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    generate_glow_layer(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    generate_solar_flares(volume, CENTER_X, CENTER_Y, CENTER_Z, t)
    generate_corona(volume, CENTER_X, CENTER_Y, CENTER_Z, t)

# Initialize encoder
enc = splv.Encoder(SIZE, SIZE, SIZE, framerate=FPS, outputPath=OUT_PATH, motionVectors="off")

# Generate animation frames
for frame in tqdm(range(FRAMES), desc="Generating sun"):
    volume = np.zeros((SIZE, SIZE, SIZE, 4), dtype=np.uint8)
    t = (frame / FRAMES) * 2*np.pi
    generate_sun_scene(volume, t)
    enc.encode(splv.Frame(volume, lrAxis="x", udAxis="y", fbAxis="z"))

enc.finish()
print(f"Created {OUT_PATH}")

Next steps

  • Adjust SUN_RADIUS to make the sun bigger or smaller.
  • Change FLARE_COUNT to add more or fewer solar flares.
  • Modify the core_colors array to create different colored stars (blue giant, red dwarf, etc.).
  • Add rotation by incrementing angles based on frame number.
  • Experiment with different noise functions for more realistic surface textures.